Structural and functional evolution of vertebrate neuroendocrine stress systems.
نویسنده
چکیده
The vertebrate hypothalamus-pituitary-adrenal (HPA; or interrenal) axis plays pivotal roles in animal development and in physiological and behavioral adaptation to environmental change. The HPA, or stress axis, is organized in a hierarchical manner, with feedback operating at several points along the axis. Recent findings suggest that the proteins, gene structures, and signaling pathways of the HPA axis were present in the earliest vertebrates and have been maintained by natural selection owing to their critical adaptive roles. In all vertebrates studied, the HPA axis is activated in response to stressors and is controlled centrally by peptides of the corticotropin-releasing factor (CRF) family of which four paralogous members have been identified. Signaling by CRF-like peptides is mediated by at least two distinct G protein-coupled receptors and modulated by a secreted binding protein. These neuropeptides function as hypophysiotropins and as neurotransmitters/neuromodulators, influencing stress-related behaviors, such as anxiety and fear. In addition to modulating HPA activity and behavioral stress responses, CRF-like peptides are implicated in timing key life history transitions, such as metamorphosis in amphibians and birth in mammals. CRF-like peptides and signaling components are also expressed outside of the central nervous system where they have diverse physiological functions. Glucocorticoids are the downstream effectors of the HPA axis, playing essential roles in development, energy balance and behavior, and feedback actions on the activity of the HPA axis.
منابع مشابه
TRENDS IN COMPARATIVE ENDOCRINOLOGY AND NEUROBIOLOGY Structural and Functional Evolution of Vertebrate Neuroendocrine Stress Systems
The vertebrate hypothalamus–pituitary–adrenal (HPA; or interrenal) axis plays pivotal roles in animal development and in physiological and behavioral adaptation to environmental change. The HPA, or stress axis, is organized in a hierarchical manner, with feedback operating at several points along the axis. Recent findings suggest that the proteins, gene structures, and signaling pathways of the...
متن کاملGonadotropin releasing hormone in the primitive vertebrate family Myxinidae: reproductive neuroanatomy and evolutionary aspects.
The family Myxinidae embraces all hagfish species, and occupies an evolutionary niche intermediate between ancestral vertebrates and the gnathostomes (jawed vertebrates). Gonadotropin releasing hormone (GnRH) modulates neuroendocrine activity in vertebrates and works in the context of the hypothalamic-pituitary (H-P) axis. The appearance of this neuroendocrine axis marks one of the most crucial...
متن کاملP-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel
Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...
متن کاملThe origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys.
The acquisition of a hypothalamic-pituitary axis was a seminal event in vertebrate evolution leading to the neuroendocrine control of many complex functions including growth, reproduction, osmoregulation, stress and metabolism. Lampreys as basal vertebrates are the earliest evolved vertebrates for which there are demonstrated functional roles for two gonadotropin-releasing hormones (GnRHs) that...
متن کاملP152: Functional and Structural Brain Changes across Childhood Traumatic Events
Although childhood is connected with high neuroplasticity changes, but because of the immaturity of the neural and cognitive systems, it is ready to grow developmental deviations and future susceptibility for neuropsychological disorders. Young children face cognitive, emotional, and linguistic limits that may lead them more vulnerable to post-traumatic stress disorder (PTSD). PTSD prevalence d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1163 شماره
صفحات -
تاریخ انتشار 2009